5.3 Use Angle Bisectors of Triangles

Before	You used angle bisectors to find angle relationships.
Now	You will use angle bisectors to find distance relationships.
Why?	So you can apply geometry in sports, as in Example 2.

Key Vocabulary

- incenter
- angle bisector, p. 28
- distance from a point to a line, p. 192

Remember that an angle bisector is a ray that divides an angle into two congruent adjacent angles. Remember also that the distance from a point to a line is the length of the perpendicular segment from the point to the line.
So, in the diagram, $\overrightarrow{P S}$ is the bisector of $\angle Q P R$ and the distance from S to $\overrightarrow{P Q}$ is $S Q$, where $\overrightarrow{S Q} \perp \overrightarrow{P Q}$.

THEOREMS

For Your Notebook

THEOREM 5.5 Angle Bisector Theorem

If a point is on the bisector of an angle, then it is equidistant from the two sides of the angle.
If $\overrightarrow{A D}$ bisects $\angle B A C$ and $\overline{D B} \perp \overrightarrow{A B}$ and $\overline{D C} \perp \overrightarrow{A C}$, then $D B=D C$.

Proof: Ex. 34, p. 315
TheOrem 5.6 Converse of the Angle Bisector Theorem
If a point is in the interior of an angle and is equidistant from the sides of the angle, then it lies on the bisector of the angle.
If $\overline{D B} \perp \overrightarrow{A B}$ and $\overline{D C} \perp \overrightarrow{A C}$ and $D B=D C$, then $\overrightarrow{A D}$ bisects $\angle B A C$.

Proof: Ex. 35, p. 315

ExAMPLE 1 Use the Angle Bisector Theorems

Find the measure of $\angle \boldsymbol{G F J}$.

Solution

Because $\overline{J G} \perp \overrightarrow{F G}$ and $\overline{J H} \perp \overrightarrow{F H}$ and $J G=J H=7, \overrightarrow{F J}$ bisects $\angle G F H$ by the Converse of the Angle Bisector Theorem. So, $m \angle G F J=m \angle H F J=42^{\circ}$.

EXAMPLE 2 Solve a real-world problem

SOCCER A soccer goalie's position relative to the ball and goalposts forms congruent angles, as shown. Will the goalie have to move farther to block a shot toward the right goalpost R or the left goalpost L ?

Solution

The congruent angles tell you that the goalie is on the bisector of $\angle L B R$. By the Angle Bisector Theorem, the goalie is equidistant from $\overrightarrow{B R}$ and $\overrightarrow{B L}$.

- So, the goalie must move the same distance to block either shot.

EXAMPLE 3 Use algebra to solve a problem

xy ALGEBRA For what value of x does P lie on the bisector of $\angle A$?

Solution

From the Converse of the Angle Bisector Theorem, you know that P lies on the bisector of $\angle A$ if P is equidistant from the sides of $\angle A$, so when $B P=C P$.

$$
\begin{aligned}
B P & =C P & & \text { Set segment lengths equal. } \\
x+3 & =2 x-1 & & \text { Substitute expressions for segment lengths. } \\
4 & =x & & \text { Solve for } x .
\end{aligned}
$$

Point P lies on the bisector of $\angle A$ when $x=4$.

GUIDED PRACTICE for Examples 1, 2, and 3

In Exercises 1-3, find the value of \boldsymbol{x}.
1.

2.

3.

4. Do you have enough information to conclude that $\overrightarrow{Q S}$ bisects $\angle P Q R$? Explain.

READ VOCABULARY An angle bisector of a triangle is the bisector of an interior angle of the triangle.

Theorem 5.7 Concurrency of Angle Bisectors of a Triangle

The angle bisectors of a triangle intersect at a point that is equidistant from the sides of the triangle.
If $\overline{A P}, \overline{B P}$, and $\overline{C P}$ are angle bisectors of $\triangle A B C$, then $P D=P E=P F$.

Proof: Ex. 36, p. 316

The point of concurrency of the three angle bisectors of a triangle is called the incenter of the triangle. The incenter always lies inside the triangle.

Because the incenter P is equidistant from the three sides of the triangle, a circle drawn using P as the center and the distance to one side as the radius will just touch the other two sides. The circle is said to be inscribed within the triangle.

EXAMPLE 4 Use the concurrency of angle bisectors

In the diagram, N is the incenter of $\triangle A B C$. Find $N D$.

Solution

By the Concurrency of Angle Bisectors of a Triangle Theorem, the incenter N is equidistant from the sides of $\triangle A B C$. So, to find $N D$, you can find $N F$ in $\triangle N A F$. Use the Pythagorean Theorem stated on page 18.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} & & \text { Pythagorean Theorem } \\
20^{2} & =N F^{2}+16^{2} & & \text { Substitute known values. } \\
400 & =N F^{2}+256 & & \text { Multiply. } \\
144 & =N F^{2} & & \text { Subtract } 256 \text { from each side. } \\
12 & =N F & & \text { Take the positive square root of each side. }
\end{aligned}
$$

- Because $N F=N D, N D=12$.

AnimatedGeometry at classzone.com
5. WHAT IF? In Example 4, suppose you are not given $A F$ or $A N$, but you are given that $B F=12$ and $B N=13$. Find $N D$.
5.3 EXERCISES

HOMEWORK O WORKED-OUT SOLUTIONS
KEY \quad on p. WS1 for Exs. 7, 15, and 29
$\star=$ STANDARDIZED TEST PRACTICE Exs. 2, 18, 23, 30, and 31

SKILL PRACTICE

1. VOCABULARY Copy and complete: Point C is in the interior of $\angle A B D$. If $\angle A B C$ and $\angle D B C$ are congruent, then $\overrightarrow{B C}$ is the ? of $\angle A B D$.
2. \star WRITING How are perpendicular bisectors and angle bisectors of a triangle different? How are they alike?

EXAMPLE 1
on p. 310
for Exs. 3-5

EXAMPLE 2
on p. 311
for Exs. 6-11

EXAMPLE 3
on p. 311
for Exs. 12-18

FINDING MEASURES Use the information in the diagram to find the measure.
3. Find $m \angle A B D$.

4. Find $P S$.

5. $m \angle Y X W=60^{\circ}$. Find $W Z$.

ANGLE BISECTOR THEOREM Is $\boldsymbol{D B}=\boldsymbol{D C}$? Explain.
6.

(7.)

8.

REASONING Can you conclude that $\overrightarrow{\boldsymbol{E H}}$ bisects $\angle F E G$? Explain.
9.

10.

11.

xy) ALGEBRA Find the value of \boldsymbol{x}.
12.

13.

14.

RECOGNIZING MISSING INFORMATION Can you find the value of x ? Explain.

(15.)

16.

17.

EXAMPLE 4
on p. 312
for Exs. 19-22
18. \star MULTIPLE CHOICE What is the value of x in the diagram?
(A) 13
(B) 18
(C) 33
(D) Not enough information

USING INCENTERS Find the indicated measure.

19. Point D is the incenter of $\triangle X Y Z$. Find $D B$.

20. Point L is the incenter of $\triangle E G J$. Find HL.

ERROR ANALYSIS Describe the error in reasoning. Then state a correct conclusion about distances that can be deduced from the diagram.
21.

$$
G D=G F
$$

22.

23. \star MULTIPLE CHOICE In the diagram, N is the incenter of $\triangle G H J$. Which statement cannot be deduced from the given information?
(A) $\overline{N M} \cong \overline{N K}$
(B) $\overline{N L} \cong \overline{N M}$
(C) $\overline{N G} \cong \overline{N J}$
(D) $\overline{H K} \cong \overline{H M}$

xy Algebra Find the value of \boldsymbol{x} that makes \boldsymbol{N} the incenter of the triangle.
24.

25.

26. CONSTRUCTION Use a compass and a straightedge to draw $\triangle A B C$ with incenter D. Label the angle bisectors and the perpendicular segments from D to each of the sides of $\triangle A B C$. Measure each segment. What do you notice? What theorem have you verified for your $\triangle A B C$?
27. CHALLENGE Point D is the incenter of $\triangle A B C$. Write an expression for the length x in terms of the three side lengths $A B, A C$, and $B C$.

= WORKED-OUT SOLUTIONS
on p. WS1 on p. WS1
$\star=\underset{\text { TEST PRACTICE }}{\text { STANDARDIZED }}$

Problem Solving

EXAMPLE 2 on p. 311
for Ex. 28
28. FIELD HOCKEY In a field hockey game, the goalkeeper is at point G and a player from the opposing team hits the ball from point B. The goal extends from left goalpost L to right goalpost R. Will the goalkeeper have to move farther to keep the ball from hitting L or R ? Explain.
@HomeTutor for problem solving help
at classzone.com

29. KOI POND You are constructing a fountain in a triangular koi pond. You want the fountain to be the same distance from each edge of the pond. Where should you build the fountain? Explain your reasoning. Use a sketch to support your answer.
@HomeTutor for problem solving help at classzone.com

30. \star SHORT RESPONSE What congruence postulate or theorem would you use to prove the Angle Bisector Theorem? to prove the Converse of the Angle Bisector Theorem? Use diagrams to show your reasoning.
31. \star EXTENDED RESPONSE Suppose you are given a triangle and are asked to draw all of its perpendicular bisectors and angle bisectors.
a. For what type of triangle would you need the fewest segments? What is the minimum number of segments you would need? Explain.
b. For what type of triangle would you need the most segments? What is the maximum number of segments you would need? Explain.

CHOOSING A METHOD In Exercises 32 and 33, tell whether you would use perpendicular bisectors or angle bisectors. Then solve the problem.
32. BANNER To make a banner, you will cut a triangle from an $8 \frac{1}{2}$ inch by 11 inch sheet of white paper and paste a red circle onto it as shown. The circle should just touch each side of the triangle. Use a model to decide whether the circle's radius should be more or less than $2 \frac{1}{2}$ inches. Can you cut the
 circle from a 5 inch by 5 inch red square? Explain.
33. CAMP A map of a camp shows a pool at $(10,20)$, a nature center at $(16,2)$, and a tennis court at $(2,4)$. A new circular walking path will connect the three locations. Graph the points and find the approximate center of the circle. Estimate the radius of the circle if each unit on the grid represents 10 yards. Then use the formula $C=2 \pi r$ to estimate the length of the path.

PROVING THEOREMS 5.5 AND 5.6 Use Exercise 30 to prove the theorem.
34. Angle Bisector Theorem
35. Converse of the Angle Bisector Theorem
36. PROVING THEOREM 5.7 Write a proof of the Concurrency of Angle Bisectors of a Triangle Theorem.
GIVEN $\triangle A B C, \overline{A D}$ bisects $\angle C A B, \overline{B D}$ bisects $\angle C B A$, $\overline{D E} \perp \overline{A B}, \overline{D F} \perp \overline{B C}, \overline{D G} \perp \overline{C A}$
PROVE The angle bisectors intersect at D, which is equidistant from $\overline{A B}, \overline{B C}$, and $\overline{C A}$.

37. CELEBRATION You are planning a graduation party in the triangular courtyard shown. You want to fit as large a circular tent as possible on the site without extending into the walkway.
a. Copy the triangle and show how to place the tent so that it just touches each edge. Then explain how you can be sure that there is no place you could fit a larger tent on the site. Use sketches to support your answer.
b. Suppose you want to fit as large a tent as possible while leaving at least one foot of space around the tent. Would you put the center of the tent in the same place as you
 did in part (a)? Justify your answer.
38. CHALLENGE You have seen that there is a point inside any triangle that is equidistant from the three sides of the triangle. Prove that if you extend the sides of the triangle to form lines, you can find three points outside the triangle, each of which is equidistant from those three lines.

MIXED REVIEW

Exs. 39-41.

Find the length of $\overline{A B}$ and the coordinates of the midpoint of $\overline{A B} \cdot(p .15)$
39. $A(-2,2), B(-10,2)$
40. $A(0,6), B(5,8)$
41. $A(-1,-3), B(7,-5)$

Explain how to prove the given statement. (p. 256)
42. $\angle Q N P \cong \angle L N M$
43. $\overline{J G}$ bisects $\angle F G H$.
44. $\triangle Z W X \cong \triangle Z Y X$

Find the coordinates of the red points in the figure if necessary. Then find $O R$ and the coordinates of the midpoint M of $\overline{R T}$. (p. 295)
45.

46.

47.

Lessons 5.1-5.3

1. SHORT RESPONSE A committee has decided to build a park in Deer County. The committee agreed that the park should be equidistant from the three largest cities in the county, which are labeled X, Y, and Z in the diagram. Explain why this may not be the best place to build the park. Use a sketch to support your answer.

2. EXTENDED RESPONSE A woodworker is trying to cut as large a wheel as possible from a triangular scrap of wood. The wheel just touches each side of the triangle as shown below.

a. Which point of concurrency is the woodworker using for the center of the circle? What type of special segment are $\overline{B G}, \overline{C G}$, and $\overline{A G}$?
b. Which postulate or theorem can you use to prove that $\triangle B G F \cong \triangle B G E$?
c. Find the radius of the wheel to the nearest tenth of a centimeter. Explain your reasoning.
3. SHORT RESPONSE Graph $\triangle G H J$ with vertices $G(2,2), H(6,8)$, and $J(10,4)$ and draw its midsegments. Each midsegment is contained in a line. Which of those lines has the greatest y-intercept? Write the equation of that line. Justify your answer.
4. GRIDDED ANSWER Three friends are practicing disc golf, in which a flying disk is thrown into a set of targets. Each player is 15 feet from the target. Two players are 24 feet from each other along one edge of the nearby football field. How far is the target from that edge of the football field?

5. MULTI-STEP PROBLEM An artist created a large floor mosaic consisting of eight triangular sections. The grey segments are the midsegments of the two black triangles.

a. The gray and black edging was created using special narrow tiles. What is the total length of all the edging used?
b. What is the total area of the mosaic?
6. OPEN-ENDED If possible, draw a triangle whose incenter and circumcenter are the same point. Describe this triangle as specifically as possible.
7. SHORT RESPONSE Points S, T, and U are the midpoints of the sides of $\triangle P Q R$. Which angles are congruent to $\angle Q S T$? Justify your answer.

